TR1.4: THE SINE RULE

The sine rule can be used to find angles and sides in any triangle (not just a right-angled triangle) when given:

- One side and any two angles
- Two sides and an angle opposite one of the given sides.

In the triangle ABC below:
- angles A, B, C, are the angles at the vertices A, B, C respectively
- a, b, c are the side lengths opposite the angles A, B, C respectively.

The sine rule states:
\[
\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \quad \text{or} \quad \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}
\]

Examples

1. In triangle PQR find:
 a) side length p
 b) side length q

 a) Side length p
 Use the sine rule in the form
 \[
 \frac{p}{\sin P} = \frac{q}{\sin Q} = \frac{r}{\sin R}
 \]
 The relevant part of the formula is
 \[
 \frac{p}{\sin 70^\circ} = \frac{15}{\sin 30^\circ}
 \]
 \[
 p = \frac{15 \times \sin 70^\circ}{\sin 30^\circ}
 \]
 \[
 p = 28.2 \text{ cm.}
 \]
b) Side length q

Angle Q is found using the fact that the sum of the three interior angles of a triangle add to 180°.

\[\therefore Q = 180° - (70° + 30°) = 80° \]

From the sine rule

\[
\frac{p}{\sin P} = \frac{q}{\sin Q} \]

\[
\frac{28.2}{\sin 70°} = \frac{q}{\sin 80°} \]

\[
q = \frac{28.2 \times \sin 80°}{\sin 70°} \]

\[
q = 29.6\text{cm}. \]

2. In triangle ABC find:

a) angle C

b) angle A

c) side length a.

[Diagram of triangle ABC with labels A, B, C, c = 12 m, b = 20 m, angle B = 126°]

a) Angle C

Use the sine rule in the form

\[
\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} \]

The relevant part of the formula is

\[
\frac{\sin B}{b} = \frac{\sin C}{c} \]

\[
\frac{\sin 126°}{20} = \frac{\sin C}{12} \]

\[
\sin C = \frac{12 \times \sin 126°}{20} \]

\[
\sin C = 0.485 \]

\[C = \sin^{-1} 0.485 \]

\[C = 29° \]

b) Angle A

\[A = 180° - (126° + 29°) \]

\[A = 25° \]

c) Side length a

Use the sine rule in the form

\[
\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \]

The relevant part of the formula is

\[
\frac{a}{\sin 25°} = \frac{b}{\sin 126°} \]

\[
a = \frac{20 \times \sin 25°}{\sin 126°} \]

\[a = 10.4\text{m}. \]
3. Given a triangle ABC with angle \(A = 30^\circ \), adjacent side = 15 cm. and opposite side = 8cm. as shown below, find angle \(C \).

In this case there are two possible solutions. This is often called the ambiguous case of the sine rule.

Use the sine rule in the form \(\frac{\sin A}{a} = \frac{\sin C}{c} \)

\[
\frac{\sin 30^\circ}{8} = \frac{\sin C}{12}
\]

\[
\sin C = \frac{12 \times \sin 30^\circ}{8} = 0.75
\]

\(C = \sin^{-1} 0.75 \)

\(C = 48.6^\circ \) This solution gives the triangle ABC₁

Another solution to \(C = \sin^{-1} 0.75 \) is \(C = 131.4^\circ (180^\circ - 48.6^\circ) \) This solution gives triangle ABC₂

In any non-right-angled triangle, where two sides and the non-included angle are given check for the ambiguous case if:

- the angle is acute and
- the length of the side adjacent to the angle is greater than the length of the side opposite the angle.

Exercises

Exercise 1

For the following triangles find the unknown sides.

a)

\[
\begin{array}{c}
\text{A} \\
30^\circ \\
\text{c} = ? \\
65^\circ \\
\text{b} = ? \\
\end{array}
\]

b)

\[
\begin{array}{c}
\text{P} \\
45^\circ \\
r = ? \\
85^\circ \\
q = ? \\
\end{array}
\]

c)

\[
\begin{array}{c}
\text{R} \\
130^\circ \\
t = ? \\
27^\circ \\
f = ? \\
\end{array}
\]

Exercise 2
For the following triangles find all unknown angles and sides.

a)
\[
\begin{array}{c}
L \quad 8.5 \\
N \quad 5 \\
M \quad 80^\circ \\
\end{array}
\]

b)
\[
\begin{array}{c}
A \quad 21 \\
B \quad 16 \\
C \quad 35^\circ \\
\end{array}
\]

c)
\[
\begin{array}{c}
A \quad 4.7 \\
B \quad 6.4 \\
C \quad 65^\circ \\
\end{array}
\]

Answers.
Question 1
a) \(b = 18.1\), \(c = 19.9\)
b) \(q = 53.5\), \(r = 41.2\)
c) \(t = 9.1\), \(r = 20.2\).

Question 2
a) \(\angle L = 35.4^\circ\), \(\angle N = 64.6^\circ\), \(n = 7.8\)
b) \(\angle C = 131.2^\circ\), \(\angle B = 13.8^\circ\), \(b = 6.7\)
c) \(\angle B = 41.7^\circ\), \(\angle A = 73.3^\circ\), \(a = 6.8\).