S1: Summation Notation

Summation notation or sigma notation is a shorthand method of writing the sum or addition of a string of similar terms. This module explains the use of this notation.

The Basic Idea

We use the Greek symbol sigma Σ to denote summation. Σ is called the summation sign.

A typical element of the sequence which is being summed appears to the right of the summation sign as shown in the figure below:

This is written as $\sum_{i=1}^{5} 2 i$.
To expand and work out it's value, we replace i by its starting value (below the sigma symbol) and obtain each successive term by adding 1 to the previous value until we reach the final value of i (above the sigma symbol) and then we evaluate.

For the above sequence:

$$
\begin{aligned}
\sum_{i=1}^{5} 2 i & =2 \times 1+2 \times 2+2 \times 3+2 \times 4+2 \times 5=30 \\
& =2+4+6+8+10 \\
& =30
\end{aligned}
$$

Example

Expand and evaluate $\sum_{i=0}^{3}\left(i^{2}-3\right)$

Note that only the i value changes in each term.

$$
\begin{aligned}
\sum_{i=0}^{3}\left(i^{2}-3\right) & =\underbrace{\left(0^{2}-3\right)}_{i=0}+\underbrace{\left(1^{2}-3\right)}_{i=1}+\underbrace{\left(2^{2}-3\right)}_{i=2}+\underbrace{\left(3^{2}-3\right)}_{i=3} \\
& =(-3)+(-2)+1+6 \\
& =2 .
\end{aligned}
$$

Data Sets

Subscripted variables are used to indicate values in a data set. $x_{1}, x_{2}, x_{3} \ldots$ refers to first value, second value, third value and so on. Formulae used to calculate summary measures of a data set make use of summation notation.

Example

Given the set of data $x_{1}=1, x_{2}=2, x_{3}=4, x_{4}=5$ evaluate
a) $\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}$ where n is the number of items in the data set

$$
\begin{aligned}
\bar{x} & =\frac{\sum_{i=1}^{4} x_{i}}{4} \\
& =\frac{x_{1}+x_{2}+x_{3}+x_{4}}{4} \\
& =\frac{1+2+4+5}{4} \\
& =3
\end{aligned}
$$

b) $s^{2}=\frac{\sum_{i=1}^{4}\left(x_{i}-\bar{x}\right)^{2}}{n-1}$

$$
\begin{aligned}
s^{2} & =\frac{\sum_{i=1}^{4}\left(x_{i}-\bar{x}\right)^{2}}{n-1} \\
& =\frac{\left(x_{1}-\bar{x}\right)^{2}+\left(x_{2}-\bar{x}\right)^{2}+\left(x_{3}-\bar{x}\right)^{2}+\left(x_{4}-\bar{x}\right)^{2}}{3} \\
& =\frac{(1-3)^{2}+(2-3)^{2}+(4-3)^{2}+(5-3)^{2}}{3} \\
& =\frac{4+1+1+4}{3} \\
& =\frac{10}{3} .
\end{aligned}
$$

Exercise 1

Find
(a) $\sum_{i=1}^{5} 3 i$
(b) $\sum_{i=1}^{3}(5 i-2)$
(c) $\sum_{i=1}^{3}(5 i)-2$

This formula calculates the mean or average of a set of data.

This formula calculates the variance (a measure of spread around the mean) of a sample of data.

Answers

1. a. 45 b. 24 c. 28

Exercise 2
Given $x_{1}=-2, x_{2}=0, x_{3}=1, x_{4}=3, x_{5}=3$ evaluate
(a) $\sum_{i=1}^{5} 10 x_{i}$
(b) $10 \sum_{i=1}^{5} x_{i}$
(c) $\sum_{i=1}^{5}\left(x_{i}\right)^{2}$
(d) $\left(\sum_{i=1}^{5} x_{i}\right)^{2}$
(e) $\sum_{i=1}^{5} i \times\left(x_{i}\right)$
(f) $\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}$

Answers
2. a. 50 b. 50 c. 23
d. 25 e. 28 f. 1

