STUDY AND LEARNING CENTRE

www.rmit.edu.au/studyandlearningcentre

STUDY TIPS

WORKED SOLUTIONS

ENDY2.2 MOTION: NON-CONSTANT ACCELERATION

Question 1 (Hibbeler, R.C, 2010, Engineering Mechanics: Dynamics 12th Ed. Pearson)

The position of a particle is given by $s = t^3 - 3t^2$ m, where t is in seconds. Calculate the time(s) when (a) the velocity of the particle is zero, (b) the acceleration is zero, and (c) calculate the total distance travelled by the particle after 3 seconds.

$$S=t^3-3t^3$$

(a)
$$s = t^3 - 3t^2$$
 $\Rightarrow \sigma = \frac{ds}{dt} = 3t^2 - 6t$

when
$$U=0$$
, $3t^2-6t=0 \Rightarrow 3t(t-2)=0$
 $\Rightarrow t=0.25$

(b)
$$v = 3t^2 - 6t \Rightarrow a = \frac{dv}{dt} = 6t - 6$$

when
$$a=0$$
, $6t-6=0 \Rightarrow t=1$

(c)
$$S = t^3 - 3t^2 = t^2(t - 3)$$
 Sketch a graph

to see what's happening

when s=0, t=0, 3s (s-intercepts on s-t graph) From (a) t=2s is turning point $0 \le t \le 3$

From (b) second derivative is positive .. negative T.P.

Distance travelled
$$\begin{cases}
0 \le t \le 2 & d = 4m \\
& \text{to left'} \\
2 < t \le 3 & d = 4m
\end{cases}$$

Question 2 (Hibbeler, R.C, 2010, Engineering Mechanics: Dynamics 12th Ed. Pearson)

A particle is moving along a straight line such that its acceleration is given by a = (-2v) m/s². If v = 20 m/s when s = 0 and t = 0, calculate (a) the particle's velocity (b) the particle's position and (c) the particle's acceleration when t = 2 seconds.

Worked Solution 2

(a)
$$a = \frac{dv}{dt} = -2v$$
 $\Rightarrow \frac{1}{2} \int \frac{dv}{v} = -\int dt$
when $t = 0$, $v = 20$: $\frac{1}{2} \int \frac{dv}{v} = -\int \frac{t}{dt}$
 $\frac{1}{2} \left[\ln v \right]_{20}^{v} = -t$ $\Rightarrow \frac{1}{2} \left(\ln v - \ln 2v \right) = -t$
 $\ln \left(\frac{v}{2v} \right) = -2t$ $\Rightarrow \frac{v}{20} = e^{2t} \Rightarrow v = 20e^{-2t}$
when $t = 2$, $v = 20e^{-1t} = 0.366 \text{ m/s}$
(b) $v = \frac{ds}{dt} = 20e^{-2t}$ (see above)
 $\Rightarrow ds = 20e^{-2t} dt$ $\Rightarrow \int ds = 20 \int e^{-2t} dt$
when $t = 0$, $s = 0$: $\int ds = 20 \int e^{-2t} dt$
 $v = 20e^{-2t} \int dv = -10 \left(e^{-2t} - 1 \right)$
when $v = 2$, $v = -10 \left(e^{-1} - 1 \right) = 9.817 \text{ m}$
(c) Since $v = -2v$ and $v = 20e^{-2t}$
 $v = -2(20e^{-2t}) = -40e^{-4t}$
when $v = 2$, $v = -40e^{-4t} = -0.733 \text{ m/s}^2$