M7 Types of Solutions

$$
\begin{gathered}
x+2 y-z=-3 \\
2 x-3 y+2 z=13 \\
-x+5 y-4 z=-19
\end{gathered}
$$

For any system of equations, there may be:

1. Infinitely many solutions
2. No solution

$$
\left[\begin{array}{ccc}
1 & 2 & -1 \\
2 & -3 & 2 \\
-1 & 5 & -4
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-3 \\
13 \\
-19
\end{array}\right]
$$

3. A unique solution

This module discusses these possibilities.

Coefficient Matrix

Consider the following system of equations:

$$
\begin{aligned}
2 x+4 y-z & =9 \\
x-y+2 z & =-4 \\
-x+y-z & =3
\end{aligned}
$$

These may be written in the matrix form:

$$
\left[\begin{array}{ccc}
2 & 4 & -1 \\
1 & -1 & 2 \\
-1 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
9 \\
-4 \\
3
\end{array}\right] .
$$

The matrix

$$
\left[\begin{array}{ccc}
2 & 4 & -1 \\
1 & -1 & 2 \\
-1 & 1 & -1
\end{array}\right]
$$

is called the coefficient matrix because it contains the coefficients of the variables x, y and z in the system of equations.

What Does the Coefficient Matrix Tell Us?

The coefficient matrix can be used to find information about the number of solutions to a system of equations. For any system of equations, if the coefficient matrix is:

1. Singular (that is the determinant $=0$) there will be an infinite number of solutions or no solutions.
2. Non-singular (determinant $\neq 0$) there will be a unique solution.

Infinitely Many Solutions

Example 1

Consider the system of equations

$$
\begin{aligned}
x+2 y-z & =3 \\
x+3 y & =4 \\
-x-y+2 z & =-2
\end{aligned}
$$

The augmented matrix for this system is

$$
\left[\begin{array}{ccc|c}
1 & 2 & -1 & 3 \\
1 & 3 & 0 & 4 \\
-1 & -1 & 2 & -2
\end{array}\right]
$$

Using elementary row operations we get:

$$
\begin{aligned}
& R_{2}^{\prime}=R_{2}-R_{1} \\
& R_{3}^{\prime}=R_{3}+R_{1}
\end{aligned}\left[\begin{array}{ccc|c}
1 & 2 & -1 & 3 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right]
$$

Row 3 tells us that $0 x+0 y+0 z=0$. This is true for any value of x, y or z. So we are able to set any one ${ }^{1}$ of these variables to some number $t \in \mathbb{R}$. For this example ${ }^{2}$, we set $z=t$. From R_{2} and substituting t for z we have

$$
\begin{aligned}
y+z & =1 \\
y+t & =1 \\
y & =1-t .
\end{aligned}
$$

${ }^{1}$ It can only be one variable as there other equations to be satisfied in R_{2} and R_{1}.
${ }^{2}$ Even though we set $z=t$, we could set either $x=t$ or $y=t$. We still get a solution to the system of equations but it will look different.

Now from R_{1}, substituting $z=t, y=1-t$ we have

$$
\begin{aligned}
x+2 y-z & =3 \\
x+2(1-t)-t & =3 \\
x+2-2 t-t & =3 \\
x & =1+3 t .
\end{aligned}
$$

So the solution is $x=1+3 t, y=1-t$ and $z=t$ where $t \in \mathbb{R} .{ }^{3}$
In general if the reduced augmented matrix has one or more rows of zeros, there will be an infinite number of solutions to the system of equations. 4

Example 2

Consider the system of equations

$$
\begin{aligned}
x+2 y-z & =3 \\
2 x+4 y-2 z & =6 \\
-5 x-10 y+5 z & =-15
\end{aligned}
$$

The augmented matrix for this system is

$$
\left[\begin{array}{ccc|c}
1 & 2 & -1 & 3 \\
2 & 4 & -2 & 6 \\
-5 & -10 & 5 & -15
\end{array}\right]
$$

Using elementary row operations we get

$$
\begin{aligned}
& R_{2}^{\prime}=R_{2}-2 R_{1} \\
& R_{3}^{\prime}=R_{3}+5 R_{1}
\end{aligned}\left[\begin{array}{ccc|c}
1 & 2 & -1 & 3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

We have only one equation and three unknowns. In this case we must let two of the three variables be free. For example, we set $z=t$, where $t \in \mathbb{R}$ and $y=s$, where $s \in \mathbb{R} .{ }^{5}$ Substituting into R_{1} we get

$$
\begin{aligned}
x+2 y-z & =3 \\
x+2 s-t & =3 \\
x & =3-2 s+t .
\end{aligned}
$$

So the solution is $x=3-2 s+t, y=s, z=t$ where $s \in \mathbb{R}$ and $t \in \mathbb{R}$.
${ }^{3}$ As there are an infinite number of choices for t, there an infinite number of solutions to the system of equations.
${ }^{4}$ You may recall that the determinant of a matrix with a row of zeros is zero. Hence the matrix is singular.
${ }^{5}$ It doesn't matter which two variables are selected to be a parameter s or t. We could set $x=s$ and $y=t$. Substituting in row 1 gives:

$$
\begin{aligned}
s+2 t-z & =3 \\
z & =s+2 t-3 .
\end{aligned}
$$

While this looks different to the solution at left, it is still a valid solution to the set of equations.

No Solutions

Consider the system of equations

$$
\begin{aligned}
x+2 y-2 z & =3 \\
2 x+y+z & =4 \\
3 y-5 z & =-1 .
\end{aligned}
$$

The augmented matrix for this system is

$$
\left[\begin{array}{ccc|c}
1 & 2 & -2 & 3 \\
2 & 1 & 1 & 4 \\
0 & 3 & -5 & -1
\end{array}\right]
$$

Using elementary row operations we get:

$$
\begin{aligned}
& R_{2}^{\prime}=R_{2}-2 R_{1}\left[\begin{array}{ccc|c}
1 & 2 & -2 & 3 \\
0 & -3 & 5 & -2 \\
0 & 3 & -5 & -1
\end{array}\right] . \\
& R_{3}^{\prime}=R_{3}+R_{2}\left[\begin{array}{ccc|c}
1 & 2 & -2 & 3 \\
0 & -3 & 5 & -1 \\
0 & 0 & 0 & -3
\end{array}\right] .
\end{aligned}
$$

In this case, R_{3} says that $0 x+0 y+0 z=-3$. This is not possible because regardless of the choice of x, y and z the LHS must be zero. In this case there are no solutions and we call the system of equations inconsistent.

Unique Solutions

Consider the system of equations

$$
\begin{aligned}
2 x+4 y-z & =9 \\
x-y+2 z & =-4 \\
-x+y-z & =3
\end{aligned}
$$

The augmented matrix for this system is

$$
\left[\begin{array}{ccc|c}
2 & 4 & -1 & 9 \\
1 & -1 & 2 & -4 \\
-1 & 1 & -1 & 3
\end{array}\right]
$$

Using elementary row operations we get

$$
\begin{gathered}
R_{1}^{\prime}=R_{2} \\
R_{2}^{\prime}=R_{1}
\end{gathered}\left[\begin{array}{ccc|c}
1 & -1 & 2 & -4 \\
2 & 4 & -1 & 9 \\
-1 & 1 & -1 & 3
\end{array}\right] .
$$

From row 3 we have $z=-1$. Substituting this into row 2 we have

$$
\begin{aligned}
6 y-5 z & =17 \\
6 y+5 & =17 \\
6 y & =12 \\
y & =2
\end{aligned}
$$

Substituting for z and y in row 1 gives:

$$
\begin{aligned}
2 x+4 y-z & =9 \\
2 x+4(2)-(-1) & =9 \\
2 x+8+1 & =9 \\
2 x & =0 \\
x & =0 .
\end{aligned}
$$

So the solution is $x=0, y=2, z=-1$.

Exercises

Find the solutions to the following systems of equations:

1. $x+2 y-z=5$
$3 x-y+2 z=1$
$2 x-y+3 z=0$
2. $x+2 y-2 z=7$
$2 x-y-z=-3$
$-x-2 y+2 z=1$
3. $2 x-y+3 z=-3$
$x+2 y+z=-4$
$4 x+3 y+5 z=-11$
4. $x+2 y-z=3$
$-x+y-2 z=-3$
$3 x+3 z=9$

Answers

1. $x=1, y=2, z=0$
2. No solution
3. $x=-\frac{7 t}{5}-2, y=\frac{t}{5}-1, z=t$ (Your answer may be different if you choose $y=t$ or $x=t$.)
4. $x=3-t, y=t, z=t$ (Your answer may be different if you choose $y=t$ or $x=t$.)
