

0.03

23

7

 a_{11}

M 1 Matrices: Introduction

- A matrix is a rectangular array of elements.
- Matrices are usually denoted by upper case letters.
- The elements are usually written within brackets.
- The order or shape of the matrix is determined by the number of rows and columns of the matrix.
- The number of rows is always given first then the number of columns.

Example.

$$A = \left[\begin{array}{rrr} 1 & 2 & -9 \\ 2 & 5 & -3 \end{array} \right]$$

A has 2 rows and 3 columns and is called a 2 × 3 matrix ¹. A matrix with *m* rows and *n* columns is called a matrix of order $m \times n^2$.

Square Matrix

A matrix with the same number of rows and columns is called a square matrix.

Example:

$$B = \left[\begin{array}{rrr} 2 & 3 \\ 2 & 5 \end{array} \right]$$

B is a square 2×2 matrix

Unit Matrix

A unit (or identity) matrix is a square matrix with diagonal elements equal to one, and all other elements equal to zero. The unit matrix is usually denoted by *I*.

¹ This is verbally stated as a 2 by 3 matrix

² This is verbally termed an "m by n matrix".

$$I_3 = \left[\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

Row Matrix

A matrix with one row is called a row matrix. Example:

$$D = \left[\begin{array}{rrrr} 2 & 1 & 0 & 4 \end{array} \right]$$

is a 1×4 row matrix

Column Matrix

A matrix with one column is called a column matrix. Example:

$$E = \left[\begin{array}{c} 2 \\ -4 \\ 1 \end{array} \right]$$

is a 3×1 column matrix

Zero Matrix

A zero matrix has all elements equal to zero. A zero matrix can be written as 0.

Example:

$$0 = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right]$$

is a 2×2 zero matrix

Equal Matrices

For two matrices to be equal they must be the same shape and the corresponding elements must be equal.

If A equals B then

$$A = \begin{bmatrix} 2 & 5 & b \\ 5 & 3 & 1 \\ 2 & 0 & -2 \end{bmatrix} \qquad B = \begin{bmatrix} 2 & 5 & 7 \\ 5 & a & 1 \\ 2 & 0 & -2 \end{bmatrix}$$

If *A* and *B* are equal then a = 3 and b = 7.

Exercise:

1. Write down the order of the following matrices. $\begin{bmatrix} 7 & 5 & 0 \end{bmatrix}$

a.
$$\begin{bmatrix} 7 & -5 & 0 \\ 6 & 2 & -1 \end{bmatrix}$$

b. $\begin{bmatrix} 0 & 2 \\ 1 & 1 \end{bmatrix}$
c. $\begin{bmatrix} 2 \\ -4 \\ 1 \\ 1 \end{bmatrix}$
d. $\begin{bmatrix} 1 & 1 \\ 3 & 0 \\ -2 & 3 \end{bmatrix}$

2. Which of the following matrices are equal?

$$A = \begin{bmatrix} 3 & 0 \\ 1 & -2 \end{bmatrix} \quad B = \begin{bmatrix} 3 & 1 \end{bmatrix} \quad C = \begin{bmatrix} 3 & 0 \end{bmatrix} \quad D = \begin{bmatrix} 3 & 0 \\ 1 & -2 \end{bmatrix}$$
$$E = \begin{bmatrix} 3 & 5 & 1 \\ 2 & 0 & 1 \end{bmatrix} \quad F = \begin{bmatrix} 0 & 3 \end{bmatrix} \quad G = \begin{bmatrix} 3 & 5 & 1 \\ 2 & 0 & 1 \\ 1 & 3 & 0 \end{bmatrix}$$

Answers

1. *a*) 2×3 *b*) 2×2 *c*) 4×1 *d*) 3×2 2. *A* and *D*