FU1.5: INVERSE FUNCTIONS

Definition of an inverse function

If \(f^{-1}(x) \) is the inverse function of a one-to-one function \(f(x) \) then \(f^{-1}(x) \) is the set of ordered pairs obtained by interchanging the first and second elements in each ordered pair.

So if \((a,b) \in f \) then \((b,a) \in f^{-1} \) and if \(f(a) = b \) then \(f^{-1}(b) = a \)

The domain of \(f \) is the range of \(f^{-1} \) and the range of \(f \) is the domain of \(f^{-1} \).

For example the function \(f: \mathbb{R} \rightarrow \mathbb{R} \) defined by \(y = f(x) = \frac{x-1}{2} \) has an inverse function with rule \(f^{-1}(x) = 2x + 1 \).

So \((3,1) \) belongs to \(f \) and \((1,3) \) belongs to \(f^{-1} \), and \((-7,-4) \) belongs to \(f \) and \((-4,-7) \) belongs to \(f^{-1} \).

Graph of an inverse function

The graphs of any one-to-one function \(f \) and its inverse \(f^{-1} \) are symmetric about the line \(y = x \).

Finding an inverse function for \(y = f(x) \)

To obtain the rule for an inverse function swap the \(x \) and \(y \) coordinates in \(f \) and rearrange to express \(y \) in terms of \(x \):

Example

Find the inverse function of \(f \) where \(f(x) = 2 - 3x \)

\[
\begin{align*}
y &= 2 - 3x \\
x &= 2 - 3y & [\text{swap } x \text{ and } y] \\
x - 2 &= -3y & [\text{rearrange to make } y \text{ the subject}] \\
-x + 2 &= 3y \\
\frac{-x + 2}{3} &= y \\
\therefore \quad f^{-1}(x) &= \frac{-x + 2}{3}
\end{align*}
\]
Exercise

Find the inverse of each of the following one-to-one functions:

1) \(y = x + 5 \)

2) \(y = 4x \)

3) \(y = \frac{2x + 1}{3} \)

4) \(y = \sqrt{2x - 1}, \ x \geq \frac{1}{2} \)

Answers

1) \(f^{-1}(x) = x - 5 \)

2) \(f^{-1}(x) = \frac{x}{4} \)

3) \(f^{-1}(x) = \frac{3x - 1}{2} \)

4) \(f^{-1}(x) = \frac{x^2 + 1}{2}, \ x \geq \frac{1}{2} \)