Integration of Functions of
the Form
$$f(x) = \frac{m}{ax+b}$$

This module looks at integrals such as $\int \frac{1}{x} dx$ and $\int \frac{1}{3x-1} dx$.

The Power Rule for Integration

One of the most important rules for integration is the power rule which says:¹

Provided $n \neq -1$ then $\int x^n dx = \frac{1}{n+1}x^{n+1} + c$ where *c* is a constant.

For example:

$$\int x dx = \frac{1}{2}x^2 + c, \quad c \in \mathbb{R}$$
$$\int x^2 dx = \frac{1}{3}x^3 + c, \quad c \in \mathbb{R}$$

The question is, " How do we deal with the case when n = -1. That is, how do we integrate $\int (1/x) dx$? The answer is we define a new function as follows:

$$\int \frac{1}{x} dx = \log_e |x| + c \quad \text{where c is a constant}$$

This function, $\log_e |x|$, is called the "natural logarithm". It is sometimes written as $\ln |x|$. Note the use of the absolute value sign. The natural logarithm is not defined for negative arguments.

We can now integrate f(x) = m/x where *m* is any constant:

$$\int \frac{m}{x} dx = m \int \frac{1}{x} dx$$
$$= m \log_e |x| + c$$

$$\int \frac{1}{5x+2} dx = \frac{1}{5} \log_e |5x+2| + c$$

$$\int \frac{1}{5x+2} dx = \frac{3}{4} \ln|4x-7| + c$$

¹ Note that if n = -1, 1/(n+1) would be 1/0 which has no meaning. *n* can be any number (other than -1) - positive, negative or a fraction.

Instead of saying c is a constant, we sometimes write $c \in \mathbb{R}$ which means c is a real number.

For example, the integral of $f(x) = \frac{5}{x}$ with respect to x is $\int \frac{5}{x} dx = 5 \log_e |x| + c$ $c \in \mathbb{R}$. There is a more general rule which covers more cases. It is:

Let *a* , b and *m* be constants with $a \neq 0$, then $\int \frac{m}{ax+b} dx = \frac{m}{a} \log_e |ax+b| + c$ where *c* is a constant.

Examples

1. Integrate $f(x) = \frac{1}{2x}$ with respect to *x*.² Solution: Using the rule

$$\int \frac{1}{2x} dx = \frac{1}{2} \log_e |2x| + c, \quad c \in \mathbb{R}.$$

2. Calculate the integral $\int \frac{2}{3x} dx^{-3}$ Solution: Using the rule

$$\int \frac{2}{3x} dx = \frac{2}{3} \log_e |3x| + c, \quad c \in \mathbb{R}.$$

3. Integrate $f(x) = \frac{13}{5x-7}$ with respect to *x*. 4 Solution: Using the rule

$$\int \frac{13}{5x-7} dx = \frac{13}{5} \ln|5x-7| + c, \quad c \in \mathbb{R}$$

4. Integrate $f(x) = \frac{6}{2-3x}$ with respect to *x*. ⁵ Solution: Using the rule

$$\int \frac{6}{2 - 3x} dx = \frac{6}{-3} \log_e |2 - 3x| + c, \quad c \in \mathbb{R}$$
$$= -2 \log_e |2 - 3x| + c.$$

5. Integrate $f(x) = \frac{6}{2-3x} - \frac{2}{x+1}$ with respect to *x*. ⁶ Solution: Using the rule

$$\int \left(\frac{6}{2-3x} - \frac{2}{x+1}\right) dx = \frac{6}{-3}\log_e |2-3x| - 2\log_e |x+1| + c, \quad c \in \mathbb{R}$$
$$= -2\log_e |2-3x| - 2\log_e |x+1| + c$$

Exercises

- 1. Calculate the following integrals
 - a) $\int \frac{1}{5x} dx$ b) $\int \frac{3}{2x} dx$ c) $\int \frac{3}{3x-5} dx$ d) $\int \frac{6}{2-7x} dx$

² Here, m = 1, a = 2 and b = 0.

³ Here, m = 2, a = 3 and b = 0.

⁴ Here, m = 13, a = 5 and b = -7.

⁵ Here, m = 6, a = -3 and b = 2.

⁶ Here, m = 6, a = -3 and b = 2 in the first term on the right hand side and m = -2, a = 1 and b = 1 in the second.

2. Integrate the following functions with respect to *x*:

a)
$$f(x) = \frac{x^2 - 2}{x}$$
 b) $f(x) = \frac{1}{3x-2} + \frac{3}{1-x}$ c) $f(x) = \frac{3}{3x-7} - x^2$ d) $f(x) = \frac{2}{5x-4} - \frac{3}{2-5x}$

Answers

$$\begin{array}{ll} 1a) & \frac{1}{5}\log_{e}|x|+c & 1b) & \frac{3}{2}\log_{e}|2x|+c & 1c) & \frac{3}{2}\log_{e}|2x-7|+c \\ 1d) & -\frac{6}{7}\log_{e}|2-7x|+c & \end{array}$$

The Definite Integral

Answers to all the integrals above were functions of x and involved a constant. Such integrals are called indefinite integrals or antiderivatives. They do not have a specific value.

For a function f(x) suppose we can write an antiderivative $F(x) = \int f(x)dx$. We then define a definite integral of a function f(x) from *a* to *b* with respect to *x* using the notation:⁷

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

where we assume f(x) is defined for all x in the interval [a, b]. We call a the lower limit of integration and b the upper limit of integration. The notation $[F(x)]_a^b$ means substitute x = b and x = a into F(x) and then subtract the values. This gets rid of the constant of integration c.

For example, suppose we want to find, $\int_1^3 x dx$. Then ⁸

$$F(x) = \int x dx$$

= $\left[\frac{1}{2}x^2 + c\right]_{x=1}^{x=3}$, $c \in \mathbb{R}$
= $\left(\frac{1}{2}3^2 + c\right) - \left(\frac{1}{2}1^2 + c\right)$
= $\left(\frac{9}{2} + c\right) - \left(\frac{1}{2} + c\right)$
= $\frac{8}{2}$
= 4.

⁷ This is known as the first fundamental theorem of calculus.

⁸ First we find an antiderivative or indefinite integral $\int x dx + c$ and then evaluate this at the limits of integration.

4

Note that the indefinite integral has a numerical value, in this case 4, and there is no constant *c*.

Examples

1. Find the integral $\int_1^2 \frac{1}{2x} dx$. 9 Solution:

$$\begin{split} \int_{1}^{2} \frac{1}{2x} dx &= \left[\frac{1}{2}\log_{e}|2x| + c\right]_{x=1}^{x=2} \\ &= \frac{1}{2}\log_{e}|2(2)| + c - \left(\frac{1}{2}\log_{e}|2(1)| + c\right) \\ &= \frac{1}{2}\log_{e}|4| - \frac{1}{2}\log_{e}|2| \\ &= \frac{1}{2}\log_{e}\left|\frac{4}{2}\right| \\ &= \frac{1}{2}\log_{e}2. \end{split}$$

⁹ In this case the antiderivative is $F(x) = \frac{1}{2} \log_e |2x| + c$, $c \in \mathbb{R}$. Also remember the log laws:

$$\log b - \log a = \log \frac{b}{a}$$
$$\log b + \log a = \log (ba)$$

Note that it is not usual to include the constant *c* as we did in lines 1 and 2 of the solution above. The next example shows this.

2. Find the integral $\int_2^3 \frac{13}{5x-7} dx$. ¹⁰ Solution:

$$\int_{2}^{3} \frac{13}{5x - 7} dx = \left[\frac{13}{5} \log_{e} |5x - 7|\right]_{2}^{3}$$
$$= \frac{13}{5} \log_{e} |15 - 7| - \left(\frac{13}{5} \log_{e} |10 - 7|\right)$$
$$= \frac{13}{5} \log_{e} |8| - \left(\frac{13}{5} \log_{e} |3|\right)$$
$$= \frac{13}{5} \log_{e} \frac{8}{3}.$$

Exercises:

- 1. Find the integral $\int_1^5 \frac{2}{3x} dx$.
- 2. Calculate the integral $\int_{1}^{2} \frac{2}{3x-1} dx$
- 3. Find the integral $\int_1^3 (x^2 2/x) dx$. Hint: $\log_e 1 = 0$.
- 4. $\int_{2}^{4} \left(\frac{2}{5x-4} \frac{3}{2-5x}\right) dx$. Hint: $\log_{e} 1 = 0$.

Answers

- 1. $2\log_e 5$ or $\log_e 25$ (using log law $a\log_e x = \log_e x^a$.
- 2. $\frac{2}{3}\log_e 3$.

¹⁰ In this case the antiderivative is $F(x) = \frac{13}{5} \log_{e} |5x - 7| + c, \quad c \in \mathbb{R}.$

- 3. $\frac{26}{3} 2\ln 3$.
- 4. $\frac{2}{5}\ln\frac{8}{3} + \frac{3}{5}\ln\frac{9}{4}$.