RMIT
UNIVERSITY

Integration of Functions of the Form $f(x)=\frac{m}{a x+b}$

This module looks at integrals such as $\int \frac{1}{x} d x$ and $\int \frac{1}{3 x-1} d x$.

The Power Rule for Integration

One of the most important rules for integration is the power rule which says: ${ }^{1}$

Provided $n \neq-1$ then

$$
\int x^{n} d x=\frac{1}{n+1} x^{n+1}+c
$$

where c is a constant.
For example:

$$
\begin{aligned}
\int x d x=\frac{1}{2} x^{2}+c, & c \in \mathbb{R} \\
\int x^{2} d x=\frac{1}{3} x^{3}+c, & c \in \mathbb{R}
\end{aligned}
$$

The question is, " How do we deal with the case when $n=-1$. That is, how do we integrate $\int(1 / x) d x$? The answer is we define a new function as follows:

$$
\int \frac{1}{x} d x=\log _{e}|x|+c \quad \text { where } \mathrm{c} \text { is a constant. }
$$

This function, $\log _{e}|x|$, is called the "natural logarithm". It is sometimes written as $\ln |x|$. Note the use of the absolute value sign. The natural logarithm is not defined for negative arguments.

We can now integrate $f(x)=m / x$ where m is any constant:

$$
\begin{aligned}
\int \frac{m}{x} d x & =m \int \frac{1}{x} d x \\
& =m \log _{e}|x|+c
\end{aligned}
$$

${ }^{1}$ Note that if $n=-1,1 /(n+1)$ would be $1 / 0$ which has no meaning. n can be any number (other than -1) - positive, negative or a fraction.

Instead of saying c is a constant, we sometimes write $c \in \mathbb{R}$ which means c is a real number.

For example, the integral of $f(x)=\frac{5}{x}$ with respect to x is $\int \frac{5}{x} d x=$ $5 \log _{e}|x|+c \quad c \in \mathbb{R}$. There is a more general rule which covers more cases. It is:

Let $a, \mathrm{~b}$ and m be constants with $a \neq 0$, then

$$
\int \frac{m}{a x+b} d x=\frac{m}{a} \log _{e}|a x+b|+c
$$

where c is a constant.

Examples

1. Integrate $f(x)=\frac{1}{2 x}$ with respect to $x .^{2}$

Solution: Using the rule

$$
\int \frac{1}{2 x} d x=\frac{1}{2} \log _{e}|2 x|+c, \quad c \in \mathbb{R}
$$

2. Calculate the integral $\int \frac{2}{3 x} d x 3$

Solution: Using the rule

$$
\int \frac{2}{3 x} d x=\frac{2}{3} \log _{e}|3 x|+c, \quad c \in \mathbb{R}
$$

3. Integrate $f(x)=\frac{13}{5 x-7}$ with respect to $x .4$

Solution: Using the rule

$$
\int \frac{13}{5 x-7} d x=\frac{13}{5} \ln |5 x-7|+c, \quad c \in \mathbb{R}
$$

4. Integrate $f(x)=\frac{6}{2-3 x}$ with respect to $x .5$

Solution: Using the rule

$$
\begin{aligned}
\int \frac{6}{2-3 x} d x & =\frac{6}{-3} \log _{e}|2-3 x|+c, \quad c \in \mathbb{R} \\
& =-2 \log _{e}|2-3 x|+c
\end{aligned}
$$

5. Integrate $f(x)=\frac{6}{2-3 x}-\frac{2}{x+1}$ with respect to x. ${ }^{6}$

Solution: Using the rule
${ }^{4}$ Here, $m=13, a=5$ and $b=-7$.

$$
\begin{aligned}
\int\left(\frac{6}{2-3 x}-\frac{2}{x+1}\right) d x & =\frac{6}{-3} \log _{e}|2-3 x|-2 \log _{e}|x+1|+c, \quad c \in \mathbb{R} \\
& =-2 \log _{e}|2-3 x|-2 \log _{e}|x+1|+c
\end{aligned}
$$

Exercises

1. Calculate the following integrals
a) $\int \frac{1}{5 x} d x$
b) $\int \frac{3}{2 x} d x$
c) $\int \frac{3}{3 x-5} d x$
d) $\int \frac{6}{2-7 x} d x$
${ }^{6}$ Here, $m=6, a=-3$ and $b=2$ in the first term on the right hand side and $m=-2, a=1$ and $b=1$ in the second.
2. Integrate the following functions with respect to x :
a) $f(x)=x^{2}-2 / x$
b) $f(x)=\frac{1}{3 x-2}+\frac{3}{1-x}$
c) $f(x)=\frac{3}{3 x-7}-x^{2}$
d) $f(x)=\frac{2}{5 x-4}-\frac{3}{2-5 x}$

Answers

$\begin{array}{cc}1 a) & \frac{1}{5} \log _{e}|x|+c \\ 1 d) & -\frac{6}{7} \log _{e}|2-7 x|+c\end{array}$
1b)
$\frac{3}{2} \log _{e}|2 x|+c$
1c) $\frac{3}{2} \log _{e}|2 x-7|+c$
2a) $\quad \frac{1}{3} x^{3}-2 \log _{e}|x|+c$
2b) $\frac{1}{3} \log _{e}|3 x-2|-3 \log _{e}|1-x|+c$
2c) $\quad \log |3 x-5|+c$
2d) $\frac{2}{5} \log _{e}|5 x-4|+\frac{3}{2} \log _{e}|2-5 x|+c$

The Definite Integral

Answers to all the integrals above were functions of x and involved a constant. Such integrals are called indefinite integrals or antiderivatives. They do not have a specific value.

For a function $f(x)$ suppose we can write an antiderivative $F(x)=$ $\int f(x) d x$. We then define a definite integral of a function $f(x)$ from a to b with respect to x using the notation: ${ }^{7}$

$$
\int_{a}^{b} f(x) d x=[F(x)]_{a}^{b}=F(b)-F(a)
$$

where we assume $f(x)$ is defined for all x in the interval $[a, b]$. We call a the lower limit of integration and b the upper limit of integration. The notation $[F(x)]_{a}^{b}$ means substitute $x=b$ and $x=a$ into $F(x)$ and then subtract the values. This gets rid of the constant of integration c.

For example, suppose we want to find, $\int_{1}^{3} x d x$. Then ${ }^{8}$

$$
\begin{aligned}
F(x) & =\int x d x \\
& =\left[\frac{1}{2} x^{2}+c\right]_{x=1}^{x=3}, \quad c \in \mathbb{R} \\
& =\left(\frac{1}{2} 3^{2}+c\right)-\left(\frac{1}{2} 1^{2}+c\right) \\
& =\left(\frac{9}{2}+c\right)-\left(\frac{1}{2}+c\right) \\
& =\frac{8}{2} \\
& =4 .
\end{aligned}
$$

${ }^{7}$ This is known as the first fundamental theorem of calculus.
${ }^{8}$ First we find an antiderivative or indefinite integral $\int x d x+c$ and then evaluate this at the limits of integration.

Note that the indefinite integral has a numerical value, in this case 4, and there is no constant c.

Examples

1. Find the integral $\int_{1}^{2} \frac{1}{2 x} d x$. ${ }^{9}$

Solution:

$$
\begin{aligned}
\int_{1}^{2} \frac{1}{2 x} d x & =\left[\frac{1}{2} \log _{e}|2 x|+c\right]_{x=1}^{x=2} \\
& =\frac{1}{2} \log _{e}|2(2)|+c-\left(\frac{1}{2} \log _{e}|2(1)|+c\right) \\
& =\frac{1}{2} \log _{e}|4|-\frac{1}{2} \log _{e}|2| \\
& =\frac{1}{2} \log _{e}\left|\frac{4}{2}\right| \\
& =\frac{1}{2} \log _{e} 2 .
\end{aligned}
$$

${ }^{9}$ In this case the antiderivative is $F(x)=\frac{1}{2} \log _{e}|2 x|+c, \quad c \in \mathbb{R}$. Also remember the log laws:

$$
\begin{aligned}
\log b-\log a & =\log \frac{b}{a} \\
\log b+\log a & =\log (b a)
\end{aligned}
$$

${ }^{10}$ In this case the antiderivative is $F(x)=\frac{13}{5} \log _{e}|5 x-7|+c, \quad c \in \mathbb{R}$.

Exercises:

1. Find the integral $\int_{1}^{5} \frac{2}{3 x} d x$.
2. Calculate the integral $\int_{1}^{2} \frac{2}{3 x-1} d x$
3. Find the integral $\int_{1}^{3}\left(x^{2}-2 / x\right) d x$. Hint: $\log _{e} 1=0$.
4. $\int_{2}^{4}\left(\frac{2}{5 x-4}-\frac{3}{2-5 x}\right) d x$. Hint: $\log _{e} 1=0$.

Answers

1. $2 \log _{e} 5$ or $\log _{e} 25$ (using log law $a \log _{e} x=\log _{e} x^{a}$.
2. $\frac{2}{3} \log _{e} 3$.
3. $\frac{26}{3}-2 \ln 3$.
4. $\frac{2}{5} \ln \frac{8}{3}+\frac{3}{5} \ln \frac{9}{4}$.
