

Authority - the 'hands-on-hips-stance'

Medical Sciences and Aerospace

Rickards, Caroline (2004). *The effect of repetitive baroreflex stimulation on orthostatic responses.* PhD Thesis, School of Medical Sciences, RMIT University.

Rickards' (2004:52) literature review establishes how her research will offer new insights and solutions to a real-world problem. The conclusion to this section points out the relevant knowledge gaps, the importance of filling these gaps, the primary aims of her study and the overall contribution to medical science and aerospace.

1. This concluding section in the literature review allows Rickards to summarise her research without citing. Note how this approach strengthens her voice.

2. Identify two gaps in knowledge that Rickards intends to fill and the rationale for addressing these issues.

3. Find the main aims of the study and the likely contributions to relevant fields.

Comments	1.8 Conclusion (Literature review)
	This review has described the cardiovascular consequences of exposure to
	varying gravitational environments, from the simple stress of orthostasis to the
	complex +Gz environment. While the incidence of G-LOC, the extreme end point
	of high +Gz exposure, has been thoroughly investigated, the incidence of A-LOC
	has not been adequately quantified in operational fighter pilots. This knowledge
	is essential to ensure the implementation of effective and up-to-date training and
	education strategies for the fighter pilot community.
	Previous studies have also demonstrated the integral role of the baroreflexes in
	cardiovascular adaptation to repeated +Gz exposure, which contributes to an
	improvement in G-tolerance in this population. However, current techniques for
	enhancing cardiovascular regulation in this environment, i.e. in-flight training and
	centrifugation are extremely expensive and time-intensive. Further investigations
	into potential alternative ground-based techniques for improving tolerance to the
	stress of +Gz exposure, via increases in BRS are clearly warranted.
	The primary aims of this thesis are to better understand the physiological
	consequences of routine high +Gz exposures in operational fighter pilots and to
	investigate the effectiveness of a number of non-invasive techniques for
	improving cardiovascular regulation to the stress of orthostasis. Completion of
	these studies may contribute to the greater understanding of cardiovascular
	regulation across the spectrum of +Gz stress, from simple orthostasis to the
	complexity of high +Gz acceleration.

Authority- the 'hands-on-hips-stance'

Answer Key

1.8 Conclusion (Literature review)

Review issue 1	This review has described the cardiovascular consequences of
	exposure to varying gravitational environments, from the simple
	stress of orthostasis to the complex +Gz environment. While
	the incidence of G-LOC, the extreme end point of high +Gz
Gap	exposure, has been thoroughly investigated, the incidence of
	A-LOC has not been adequately quantified in operational
Detionala	fighter pilots. This knowledge is essential to ensure the
Rationale	implementation of effective and up-to-date training and
	education strategies for the fighter pilot community.
Review issue 2	Previous studies have also demonstrated the integral role of
	the baroreflexes in cardiovascular adaptation to repeated +Gz
	exposure, which contributes to an improvement in G-tolerance
	in this population. However, current techniques for
Gap	enhancing cardiovascular regulation in this environment,
	i.e. in-flight training and centrifugation are extremely
	expensive and time-intensive. Further investigations into
	potential alternative ground-based techniques for
Rationale	improving tolerance to the stress of +Gz exposure, via
	increases in BRS are clearly warranted.
How to fill the	The primary aims of this thesis are to better understand the
gaps – key	physiological consequences of routine high +Gz exposures in
research question	operational fighter pilots and to investigate the effectiveness of
	a number of non-invasive techniques for improving
	cardiovascular regulation to the stress of orthostasis.
Contribution:	Completion of these studies may contribute to the greater
'super-rationale'	understanding of cardiovascular regulation across the
	spectrum of +Gz stress, from simple orthostasis to the
	complexity of high +Gz acceleration.

KEY

- Knowledge gaps in red.
- Key rationale and research contributions in blue.