Skip to content
RMIT University Library - Learning Lab

HF2 Derivatives and integrals of hyperbolic functions

 

The hyperbolic functions are widely used in engineering, science and mathematics. This module discusses differentiation and integration of hyperbolic functions.

Definitions

The basic hyperbolic functions are sinh and cosh and are defined as follows.

The hyperbolic sine function is

\[\begin{align*} \sinh\left(x\right) & =\frac{e^{x}-e^{-x}}{2}. \end{align*}\] It is pronounced as “shine \(x\)”.

The hyperbolic cosine function is defined as \[\begin{align*} \cosh\left(x\right) & =\frac{e^{x}+e^{-x}}{2}. \end{align*}\] It is pronounced as “cosh \(x\)”.

In addition to these we also define \[\begin{align*} \tanh\left(x\right) & =\frac{\sinh\left(x\right)}{\cosh\left(x\right)}\\ & =\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}. \end{align*}\] It is pronounced as “than \(x\)” where the “than” is pronounced as in “thank”.

Just as for the circular functions, there are reciprocal hyperbolic functions. They are:

\[\begin{align*} \text{$\text{coshec$\left(x\right)$ }$ } & =\frac{1}{\sinh\left(x\right)}\\ \text{sech$\left(x\right)$ } & =\frac{1}{\cosh\left(x\right)}\\ \coth\left(x\right) & =\frac{1}{\tanh\left(x\right)}. \end{align*}\]

Derivatives of Hyperbolic Functions

The derivatives of the hyperbolic functions may be found using their definitions.

For \(\sinh,\) let \(a\) be a constant, then: \[\begin{align*} \frac{d}{dx}\sinh\left(ax\right) & =\frac{d}{dx}\left(\frac{e^{ax}-e^{-ax}}{2}\right)\\ & =\frac{ae^{ax}+ae^{-ax}}{2}\\ & =a\cosh\left(ax\right). \end{align*}\] For cosh, \[\begin{align*} \frac{d}{dx}\cosh\left(ax\right) & =\frac{d}{dx}\left(\frac{e^{ax}+e^{-ax}}{2}\right)\\ & =\frac{ae^{ax}-ae^{-ax}}{2}\\ & =a\sinh\left(ax\right). \end{align*}\]

The quotient, product and chain rules can be applied to functions involving hyperbolic functions. For example, using the quotient rule, \[\begin{align*} \frac{d}{dx}\tanh\left(ax\right) & =\frac{d}{dx}\left(\frac{\sinh\left(ax\right)}{\cosh\left(ax\right)}\right)\\ & =\frac{d}{dx}\left(\frac{e^{ax}-e^{-ax}}{e^{ax}+e^{-ax}}\right)\\ & =\frac{\left(e^{ax}+e^{-ax}\right)\frac{d}{dx}\left(e^{ax}-e^{-ax}\right)-\left(e^{ax}-e^{-ax}\right)\frac{d}{dx}\left(e^{ax}+e^{-ax}\right)}{\left(e^{ax}+e^{-ax}\right)^{2}}\\ & =\frac{\left(e^{ax}+e^{-ax}\right)a\left(e^{ax}+e^{-ax}\right)-a\left(e^{ax}-e^{-ax}\right)\left(e^{ax}-e^{-ax}\right)}{\left(e^{ax}+e^{-ax}\right)^{2}}\\ & =\frac{a\left(e^{ax}+e^{-ax}\right)^{2}-a\left(e^{ax}-e^{-ax}\right)^{2}}{\left(e^{ax}+e^{-ax}\right)^{2}}\\ & =a-a\frac{\left(e^{ax}-e^{-ax}\right)^{2}}{\left(e^{ax}+e^{-ax}\right)^{2}}\\ & =a\left(1-\tanh^{2}\left(ax\right)\right)\\ & =a\text{sech$^{2}\left(ax\right).$ } \end{align*}\]

In summary, \[\begin{align*} \frac{d}{dx}\sinh\left(ax\right) & =a\cosh\left(ax\right)\\ \frac{d}{dx}\cosh\left(ax\right) & =a\sinh\left(ax\right)\\ \frac{d}{dx}\tanh\left(ax\right) & =a\text{sech$^{2}$ $\left(ax\right)$ .} \end{align*}\]

Example 1

Find the derivative, with respect to \(x\), of \(\cosh\left(x^{2}+3x\right).\)

Solution:

Let \(u=x^{2}+3x\) then \(du/dx=2x+3\) and by the chain rule, \[\begin{align*} \frac{d}{dx}\cosh\left(x^{2}+3x\right) & =\frac{d}{du}\cosh\left(u\right)\frac{du}{dx}\\ & =\sinh\left(u\right)\left(2x+3\right)\\ & =\left(2x+3\right)\sinh\left(x^{2}+3x\right). \end{align*}\] Hence the derivative, with respect to \(x,\) of \(\cosh\left(x^{2}+3x\right)\) is \(\left(2x+3\right)\sinh\left(x^{2}+3x\right)\).

Example 2

Find the approximate slope of the tangent to \(y=\sinh\left(4x\right)\) at \(x=0.5\) to three decimal places.

Solution:

Differentiating, \[\begin{align*} \frac{dy}{dx} & =4\cosh\left(4x\right). \end{align*}\] At \(x=0.5,\) \[\begin{align*} \left.\frac{dy}{dx}\right|_{x=0.5} & =4\cosh\left(4\left(0.5\right)\right)\\ & =4\cosh\left(2\right)\\ & =4\left(\frac{e^{2}+e^{-2}}{2}\right)\\ & =2\left(e^{2}+\left(\frac{1}{e^{2}}\right)\right)\\ & \approx15.049\,. \end{align*}\] The slope of the tangent is approximately \(15.049\) at \(x=0.5\).

Integrals of Hyperbolic Functions

Let \(a\) be a constant. Using the definitions, \[\begin{align*} \int\sinh\left(ax\right)dx & =\int\left(\frac{e^{ax}-e^{-ax}}{2}\right)dx\\ & =\frac{\frac{1}{a}e^{ax}+\frac{1}{a}e^{-ax}}{2}+c,\quad c\in\mathbb{R}\\ & =\frac{1}{a}\cosh\left(ax\right)+c. \end{align*}\] Similarly, \[\begin{align*} \int\cosh\left(ax\right)dx & =\int\left(\frac{e^{ax}+e^{-ax}}{2}\right)dx\\ & =\frac{\frac{1}{a}e^{ax}-\frac{1}{a}e^{-ax}}{2}+c,\quad c\in\mathbb{R}\\ & =\frac{1}{a}\sinh\left(ax\right)+c. \end{align*}\] For the integral of \(\tanh,\) we use integration by substitution. Let \(u=\cosh\left(ax\right),\) then \(du/dx=a\,\sinh\left(x\right)\) and \[\begin{align*} \int\tanh\left(ax\right)dx & =\int\frac{\sinh\left(ax\right)}{\cosh\left(ax\right)}dx\\ & =\frac{1}{a}\int\frac{1}{\cosh\left(ax\right)}\frac{du}{dx}dx\\ & =\frac{1}{a}\int\frac{1}{u}du\\ & =\frac{1}{a}\ln\left(\cosh\left(ax\right)\right)+c,\quad c\in\mathbb{R}. \end{align*}\]

Summarising \[\begin{align*} \int\sinh\left(ax\right)dx & =\frac{1}{a}\cosh\left(ax\right)+c\\ \int\cosh\left(ax\right)dx & =\frac{1}{a}\sinh\left(ax\right)+c\\ \int\tanh\left(ax\right)dx & =\frac{1}{a}\ln\left(\cosh\left(ax\right)\right)+c. \end{align*}\]

Example 3

Find \(\int\cosh\left(3x\right)dx.\)

Solution:

\[\begin{align*} \int\cosh\left(3x\right) & =\frac{1}{3}\sinh\left(3x\right)+c \end{align*}\] where \(c\) is a constant.

Example 4

Find the value of \(\int_{0}^{\ln\left(2\right)}\sinh\left(x\right)dx.\)

Solution: \[\begin{align*} \int_{0}^{\ln\left(2\right)}\sinh\left(x\right)dx & =\left[\cosh\left(x\right)\right]_{x=0}^{x=\ln\left(2\right)}\\ & =\cosh\left(\ln\left(2\right)\right)-\cosh\left(0\right)\\ & =\frac{1}{2}\left(e^{\ln\left(2\right)}+e^{-\ln\left(2\right)}\right)-\frac{1}{2}\left(e^{0}+e^{-0}\right)\\ & =\frac{1}{2}\left(e^{\ln\left(2\right)}+e^{\ln\left(\frac{1}{2}\right)}\right)-1\\ & =\frac{1}{2}\left(2+\frac{1}{2}\right)-1\\ & =\frac{1}{2}\left(\frac{5}{2}\right)-1\\ & =\frac{1}{4}. \end{align*}\]

Example 5

Find \(\int\left(12x^{3}-2\right)\tanh\left(3x^{4}-2x\right)dx.\)

Solution:

We use the substitution method. Let \[\begin{align*} u & =3x^{4}-2x \end{align*}\] then \[\begin{align*} \frac{du}{dx} & =12x^{3}-2. \end{align*}\] Now, the integral may be written \[\begin{align*} \int\left(12x^{3}-2\right)\tanh\left(3x^{4}-2x\right)dx & =\int\frac{du}{dx}\tanh\left(u\right)dx\\ & =\int\tanh\left(u\right)du\\ & =\ln\left(\cosh\left(u\right)\right)+c'\,,\ \text{where $c'\ \text{is a constant.}$ }\\ & =\ln\left(\cosh\left(3x^{4}-2x\right)\right)+c\,,\ \text{where $c\ \text{is a constant.}$ } \end{align*}\] Hence \[\begin{align*} \int\left(12x^{3}-2\right)\tanh\left(3x^{4}-2x\right)dx & =\ln\left(\cosh\left(3x^{4}-2x\right)\right)+c\,,\ \text{where $c\ \text{is a constant.}$ } \end{align*}\]

Exercises

  1. Find the derivative, with respect to \(x,\) of
    \(\quad\)a) \(y=6\cosh\left(x/3\right)\)
    \(\quad\)b) \(y=\frac{1}{2}\sinh\left(2x+1\right)\)

  2. Evaluate:
    \(\quad\)a) \(\int\cosh\left(3x\right)dx\)
    \(\quad\)b) \(\int_{1}^{2}\frac{\cosh\left(\ln\left(t\right)\right)}{t}dt.\)

Answers

    1. \(2\sinh\left(x/3\right)\qquad\text{b) $\cosh\left(2x+1\right)$ }\)
    1. \(\frac{1}{3}\sinh\left(3x\right)+\text{constant$\qquad\text{b) $0.75$ }$ }\)

Download this page: HF2 Derivatives and Integrals of Hyperbolic Functions (PDF 184KB)

What's next... HF3 Inverse hyperbolic functions

Keywords: